Improving ontologies by automatic reasoning and evaluation of logical definitionsReport as inadecuate


Improving ontologies by automatic reasoning and evaluation of logical definitions


Improving ontologies by automatic reasoning and evaluation of logical definitions - Download this document for free, or read online. Document in PDF available to download.

Publication Date: 2011-10-27

Type: Article

Metadata: Show full item record

Citation: Kohler, S., Bauer, S., Mungall, C. J., Carletti, G., Smith, C. L., Schofield, P., Gkoutos, G. V., & et al. (2011). Improving ontologies by automatic reasoning and evaluation of logical definitions.

Description: RIGHTS : This article is licensed under the BioMed Central licence at http://www.biomedcentral.com/about/license which is similar to the 'Creative Commons Attribution Licence'. In brief you may : copy, distribute, and display the work; make derivative works; or make commercial use of the work - under the following conditions: the original author must be given credit; for any reuse or distribution, it must be made clear to others what the license terms of this work are.

Abstract: Abstract Background Ontologies are widely used to represent knowledge in biomedicine. Systematic approaches for detecting errors and disagreements are needed for large ontologies with hundreds or thousands of terms and semantic relationships. A recent approach of defining terms using logical definitions is now increasingly being adopted as a method for quality control as well as for facilitating interoperability and data integration. Results We show how automated reasoning over logical definitions of ontology terms can be used to improve ontology structure. We provide the Java software package GULO (Getting an Understanding of LOgical definitions), which allows fast and easy evaluation for any kind of logically decomposed ontology by generating a composite OWL ontology from appropriate subsets of the referenced ontologies and comparing the inferred relationships with the relationships asserted in the target ontology. As a case study we show how to use GULO to evaluate the logical definitions that have been developed for the Mammalian Phenotype Ontology (MPO). Conclusions Logical definitions of terms from biomedical ontologies represent an important resource for error and disagreement detection. GULO gives ontology curators a fast and simple tool for validation of their work.

Identifiers: http://dx.doi.org/10.1186/1471-2105-12-418

This record's URL: http://www.dspace.cam.ac.uk/handle/1810/240641

Rights:

Rights Holder: Kohler et al.; licensee BioMed Central Ltd.





Author: Kohler, SebastianBauer, SebastianMungall, Chris J.Carletti, GabrieleSmith, Cynthia L.Schofield, PaulGkoutos, Georgios V.Robinson,

Source: https://www.repository.cam.ac.uk/handle/1810/240641



DOWNLOAD PDF




Related documents