In situ measurement of snowmelt infiltrationunder various topsoil cap thicknesses on a reclaimed site.Report as inadecuate




In situ measurement of snowmelt infiltrationunder various topsoil cap thicknesses on a reclaimed site. - Download this document for free, or read online. Document in PDF available to download.

water and heat dynamics, Seasonally frozen soils, ground thermal regime, phosphogypsum tailing, Fort Saskatchewan, snowmelt infiltration

Additional contributors:

Subject-Keyword: water and heat dynamics Seasonally frozen soils ground thermal regime phosphogypsum tailing Fort Saskatchewan snowmelt infiltration

Type of item: Journal Article Published

Language: English

Place:

Time:

Description: Understanding the soil and climatic conditions affecting the partitioning of snowmelt to runoff and infiltration during spring snow ablation is a requisite for water resources management and environmental risk assessment in cold semi-arid regions. Soil freezing and thawing processes, snowmelt runoff or infiltration into seasonally frozen soils have been documented for natural, agricultural or forested systems but rarely studied in severely disturbed systems such as reclaimed lands. The objective of this study was to quantify the snowmelt infiltration-runoff on phosphogypsum PG tailings piles capped with varying thicknesses of topsoil 0.15, 0.3, and 0.46 m at a phosphate fertilizer production facility in Alberta. There are currently no environmental regulations specifying topsoil capping thickness or characteristics for these types of tailings piles. Generally, the function of the topsoil cap is to facilitate plant growth and minimize the amount of drainage into the underlying PG. Experimental plots were established in 2006 to better understand the vegetation and water dynamics in this reconstructed soil. In 2011, time domain reflectometry TDR probes and temperature sensors were installed at various depths for continuous, simultaneous, and automated measurement of composite dielectric permittivity ɛeff and soil temperature, respectively. An on-site meteorological station was used to record routine weather data. Liquid water and ice content were calculated with TDR-measured effective permittivity ɛeff and a composite dielectric mixing model. Spatial and temporal change of total water content ice and liquid revealed that snowmelt infiltration into the topsoil cap increased with increasing topsoil depth and net soil water flux from the topsoil cap into the PG material was positive during the snowmelt period in the spring of 2011. Given the objective of the capping soil is to reduce drainage of water into the PG material it is recognized that a capping soil with a higher water-holding capacity could reduce the amount of meteoric water entering the tailings.

Date created: 2013

DOI: doi:10.7939-R3RJ48W4M

License information:

Rights: © 2013 Agricultural Institute of Canada. This version of this article is open access and can be downloaded and shared. The original authors and source must be cited.





Author: Christensen, A. F. He, H. Dyck, M. F. Turner, L. E. Chanasyk, D. S. Naeth, M. A. Nichol, C.

Source: https://era.library.ualberta.ca/


Teaser



In situ measurement of snowmelt infiltration under various topsoil cap thicknesses on a reclaimed site Andre F.
Christensen1, Hailong He1, Miles F.
Dyck1,3, E.
Lenore Turner1, David S. Chanasyk1, M.
Anne Naeth1, and Connie Nichol2 1 Department of Renewable Resources, 751 General Service Building, University of Alberta, Edmonton, Alberta, Canada T6G 2H1; and 2Agrium, Inc., 1751 River Rd, Fort Saskatchewan, Alberta, Canada T8L 4J1. Received 1 May 2012, accepted 27 May 2013. Can.
J.
Soil.
Sci.
Downloaded from pubs.aic.ca by University of Alberta on 10-28-13 For personal use only. Christensen, A.
F., He, H., Dyck, M.
F., Turner, L., Chanasyk, D.
S., Naeth, M.
A.
and Nichol, C.
2013.
In situ measurement of snowmelt infiltration under various topsoil cap thicknesses on a reclaimed site.
Can.
J.
Soil Sci.
93: 497510. Understanding the soil and climatic conditions affecting the partitioning of snowmelt to runoff and infiltration during spring snow ablation is a requisite for water resources management and environmental risk assessment in cold semi-arid regions.
Soil freezing and thawing processes, snowmelt runoff or infiltration into seasonally frozen soils have been documented for natural, agricultural or forested systems but rarely studied in severely disturbed systems such as reclaimed lands.
The objective of this study was to quantify the snowmelt infiltration-runoff on phosphogypsum (PG) tailings piles capped with varying thicknesses of topsoil (0.15, 0.3, and 0.46 m) at a phosphate fertilizer production facility in Alberta. There are currently no environmental regulations specifying topsoil capping thickness or characteristics for these types of tailings piles.
Generally, the function of the topsoil cap is to facilitate plant growth and minimize the amount of drainage into the underlying PG.
Experimental plots were established in 2006 to better understand the vegetation and water dynamics in this reconstructed soil.
In 2011, time domain reflectometry (TDR) probes ...





Related documents