Vascular Tone Regulation Induced by C-Type Natriuretic Peptide: Differences in Endothelium-Dependent and -Independent Mechanisms Involved in Normotensive and Spontaneously Hypertensive RatsReport as inadecuate




Vascular Tone Regulation Induced by C-Type Natriuretic Peptide: Differences in Endothelium-Dependent and -Independent Mechanisms Involved in Normotensive and Spontaneously Hypertensive Rats - Download this document for free, or read online. Document in PDF available to download.

Given that the role of C-type natriuretic peptide CNP in the regulation of vascular tone in hypertensive states is unclear, we hypothesized that impaired response of the nitric oxide system to CNP in spontaneously hypertensive rats SHR could affect vascular relaxation induced by the peptide in this model of hypertension, and that other endothelial systems or potassium channels opening could also be involved. We examined the effect of CNP on isolated SHR aortas, and the hindlimb vascular resistance HVR in response to CNP administration compared to normotensive rats. Aortas were mounted in an isometric organ bath and contracted with phenylephrine. CNP relaxed arteries in a concentration-dependent manner but was less potent in inducing relaxation in SHR. The action of CNP was diminished by removal of the endothelium, inhibition of nitric oxide synthase by Nω-nitro-L-arginine methyl ester, and inhibition of soluble guanylyl cyclase by 1H-1,2,4oxadiazolo4,3-alphaquinoxalin-1-one in both groups. In contrast, blockade of cyclooxygenase or subtype 2 bradykinin receptor increased CNP potency only in SHR. In both Wistar and SHR, CNP relaxation was blunted by tetraethylammonium and partially inhibited by BaCl2 and iberiotoxin, indicating that it was due to opening of the Kir and BKCa channels. However, SHR seem to be more sensitive to Kir channel blockade and less sensitive to BKCa channel blockade than normotensive rats. In addition, CNP decreases HVR in Wistar and SHR, but the effect of CNP increasing blood flow was more marked in SHR. We conclude that CNP induces aorta relaxation by activation of the nitric oxide system and opening of potassium channels, but the response to the peptide is impaired in conductance vessel of hypertensive rats.



Author: Carolina Caniffi , Flavia M. Cerniello, María N. Gobetto, María L. Sueiro, María A. Costa †, Cristina Arranz

Source: http://plos.srce.hr/



DOWNLOAD PDF




Related documents