Premature Termination of MexR Leads to Overexpression of MexAB-OprM Efflux Pump in Pseudomonas aeruginosa in a Tertiary Referral Hospital in IndiaReport as inadecuate




Premature Termination of MexR Leads to Overexpression of MexAB-OprM Efflux Pump in Pseudomonas aeruginosa in a Tertiary Referral Hospital in India - Download this document for free, or read online. Document in PDF available to download.

Objectives

The present study was undertaken to investigate the mutations that are present in mexR gene of multidrug resistant MDR isolates of Pseudomonas aeruginosa collected from a tertiary referral hospital of north east India.

Methods

76 MDR clinical isolates of P. aeruginosa were obtained from the patients who were admitted to or attended the clinics of Silchar medical college and hospital. They were screened phenotypically for the presence of efflux pump activity by an inhibitor based method. Acquired resistance mechanisms were detected by multiplex PCR. Real time PCR was performed to study the expression of mexA gene of MexAB-OprM efflux pump in isolates with increase efflux pump activity. mexR gene of the isolates with overexpressed MexAB-OprM efflux pump was amplified, sequenced and analysed.

Results

Out of 76 MDR isolates, 24 were found to exhibit efflux pump activity phenotypically against ciprofloxacin and meropenem. Acquired resistance mechanisms were absent in 11 of them and among those isolates, 8 of them overexpressed MexAB-OprM. All the 8 isolates possessed mutation in mexR gene. 11 transversions, 4 transitions, 2 deletion mutations and 2 insertion mutations were found in all the isolates. However, the most significant observation was the formation of a termination codon at 35th position which resulted in the termination of the polypeptide and leads to overexpression of the MexAB-OprM efflux pump.

Conclusions

This study highlighted emergence of a novel mutation which is probably associated with multi drug resistance. Therefore, further investigations and actions are needed to prevent or at least hold back the expansion and emergence of newer mutations in nosocomial pathogens which may compromise future treatment options.



Author: Debarati Choudhury , Anamika Ghosh , Debadatta Dhar Chanda , Anupam Das Talukdar , Manabendra Dutta Choudhury , Deepjyoti Paul ,

Source: http://plos.srce.hr/



DOWNLOAD PDF




Related documents