A Model for the Stability of a TiO2 DispersionReport as inadecuate

A Model for the Stability of a TiO2 Dispersion - Download this document for free, or read online. Document in PDF available to download.

ISRN Materials ScienceVolume 2013 2013, Article ID 547608, 9 pages

Research ArticleDepartamento de Ciencias Naturales, DCNI, Universidad Autónoma Metropolitana, Unidad Cuajimalpa, Avenida Pedro Antonio de los Santos 84, 11850 México, DF, Mexico

Received 11 June 2013; Accepted 15 July 2013

Academic Editors: F. M. Labajos, T. Matsumoto, and M. Saitou

Copyright © 2013 Armando Gama Goicochea. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.


A computational study of a colloidal dispersion stabilized with grafted polymer layers is presented here as a model for white, water-based paints. The interaction model includes repulsive, three-body interactions and attractive van der Waals forces. The electrostatic interactions are also studied. Stability criteria can be established for the dispersion, such as the thickness of the adsorbed polymer layers, and the quality of the solvent. Using implicit solvent molecular dynamics calculations, the spatial distribution of the pigments is obtained through the calculation of the radial distribution functions. The results show that the solvent quality and the thickness of the grafted polymer layer are key variables in the stability of the dispersion. Additionally, a structural phase transition is predicted, which is driven by the pigment concentration in the dispersion. It is argued that the predictions of this work are useful guidelines in the design of paints and coatings of current industrial interest.

Author: Armando Gama Goicochea

Source: https://www.hindawi.com/


Related documents