Short Faces, Big Tongues: Developmental Origin of the Human ChinReport as inadecuate

Short Faces, Big Tongues: Developmental Origin of the Human Chin - Download this document for free, or read online. Document in PDF available to download.

During the course of human evolution, the retraction of the face underneath the braincase, and closer to the cervical column, has reduced the horizontal dimension of the vocal tract. By contrast, the relative size of the tongue has not been reduced, implying a rearrangement of the space at the back of the vocal tract to allow breathing and swallowing. This may have left a morphological signature such as a chin mental prominence that can potentially be interpreted in Homo. Long considered an autopomorphic trait of Homo sapiens, various extinct hominins show different forms of mental prominence. These features may be the evolutionary by-product of equivalent developmental constraints correlated with an enlarged tongue. In order to investigate developmental mechanisms related to this hypothesis, we compare modern 34 human infants against 8 chimpanzee fetuses, whom development of the mandibular symphysis passes through similar stages. The study sets out to test that the shared ontogenetic shape changes of the symphysis observed in both species are driven by the same factor – the space restriction at the back of the vocal tract and the associated arrangement of the tongue and hyoid bone. We apply geometric morphometric methods to extensive three-dimensional anatomical landmarks and semilandmarks configuration, capturing the geometry of the cervico-craniofacial complex including the hyoid bone, tongue muscle and the mandible. We demonstrate that in both species, the forward displacement of the mental region derives from the arrangement of the tongue and hyoid bone, in order to cope with the relative horizontal narrowing of the oral cavity. Because humans and chimpanzees share this pattern of developmental integration, the different forms of mental prominence seen in some extinct hominids likely originate from equivalent ontogenetic constraints. Variations in this process could account for similar morphologies.

Author: Michael Coquerelle , Juan Carlos Prados-Frutos, Rosa Rojo, Philipp Mitteroecker, Markus Bastir



Related documents