Sur l-irréductibilité d-une induite paraboliqueReport as inadecuate

 Sur l-irréductibilité d-une induite parabolique

Sur l-irréductibilité d-une induite parabolique - Download this document for free, or read online. Document in PDF available to download.

Let $F$ be a non-Archimedean locally compact field and let $D$ be a central division algebra over $F$. Let $\pi 1$ and $\pi 2$ be respectively two smooth irreducible representations of ${ m GL}n 1,D$ and ${ m GL}n 2,F$, $n 1, n 2 \geq 0$. In this article, we give some sufficient conditions on $\pi 1$ and $\pi 2$ so that the parabolically induced representation of $\pi 1 \otimes \pi 2$ to ${ m GL}n 1+n 2,D$ has a unique irreducible quotient. In the case where $\pi 1$ is a cuspidal representation, we compute the Zelevinsky-s parameters of such a quotient in terms of parameters of $\pi 2$. This is the key point for making explicit Howe correspondence for dual pairs of type II.

Author: Alberto Minguez


Related documents