# Understanding the Occurrence of Two Total Floats in One Activity and Schedule Crashing Approaches for That Situation

Critical Path Method CPM Scheduling has proven to be an effective project management tool. However, teaching the topic has proven difficult to include all elements of CPM yet keep it simple enough for students to understand. In an effort to simplify the teaching of critical path method scheduling, the issue of two total floats in an activity does not get the attention necessary to address its occurrence. The objective of this paper is to present a mathematical method to show multiple total floats are possible for an activity. Also presented are suggestions for schedule crashing when multiple total floats are found. Two totals floats can be found if constraints Lag or Lead or non-Finish-to-Start FS relationships, or both are used in a network diagram. Situations are possible where an activity may have a start total float STF of zero but have a finish total float FTF greater than zero, or vice versa. Because the critical path generally follows the zero total float, these situations, where either the STF or the FTF is critical while the other is not, determines how the critical path activity must be controlled and crashed. This paper will present approaches of how to crash the schedule when a portion of the activity, either start or finish, is critical. Also presented will be methods to teach the subject matter with or without the use of scheduling software. Critical Path Method was revisited to see what the minimal conditions are needed to have activities with two total float. Generalized crashing methods were studied to see if the methods can be used when two total floats exist.

KEYWORDS

Critical Path Method; Multiple Total Floats; Schedule Crashing; Constraints; Lag-Lead

Cite this paper

Ryoo, B. and Duff, M. 2013 Understanding the Occurrence of Two Total Floats in One Activity and Schedule Crashing Approaches for That Situation. Journal of Building Construction and Planning Research, 1, 67-74. doi: 10.4236-jbcpr.2013.13010.

Author: Boong Yeol Ryoo, Mike T. Duff

Source: http://www.scirp.org/