Prediction of Protein-Destabilizing Polymorphisms by Manual Curation with Protein StructureReport as inadecuate




Prediction of Protein-Destabilizing Polymorphisms by Manual Curation with Protein Structure - Download this document for free, or read online. Document in PDF available to download.

The relationship between sequence polymorphisms and human disease has been studied mostly in terms of effects of single nucleotide polymorphisms SNPs leading to single amino acid substitutions that change protein structure and function. However, less attention has been paid to more drastic sequence polymorphisms which cause premature termination of a protein’s sequence or large changes, insertions, or deletions in the sequence. We have analyzed a large set n = 512 of insertions and deletions indels and single nucleotide polymorphisms causing premature termination of translation in disease-related genes. Prediction of protein-destabilization effects was performed by graphical presentation of the locations of polymorphisms in the protein structure, using the Genomes TO Protein GTOP database, and manual annotation with a set of specific criteria. Protein-destabilization was predicted for 44.4% of the nonsense SNPs, 32.4% of the frameshifting indels, and 9.1% of the non-frameshifting indels. A prediction of nonsense-mediated decay allowed to infer which truncated proteins would actually be translated as defective proteins. These cases included the proteins linked to diseases inherited dominantly, suggesting a relation between these diseases and toxic aggregation. Our approach would be useful in identifying potentially aggregation-inducing polymorphisms that may have pathological effects.



Author: Craig Alan Gough, Keiichi Homma, Yumi Yamaguchi-Kabata, Makoto K. Shimada, Ranajit Chakraborty, Yasuyuki Fujii, Hisakazu Iwama, S

Source: http://plos.srce.hr/



DOWNLOAD PDF




Related documents