Capture of Neuroepithelial-Like Stem Cells from Pluripotent Stem Cells Provides a Versatile System for In Vitro Production of Human NeuronsReport as inadecuate




Capture of Neuroepithelial-Like Stem Cells from Pluripotent Stem Cells Provides a Versatile System for In Vitro Production of Human Neurons - Download this document for free, or read online. Document in PDF available to download.

Human embryonic stem cells hESC and induced pluripotent stem cells iPSC provide new prospects for studying human neurodevelopment and modeling neurological disease. In particular, iPSC-derived neural cells permit a direct comparison of disease-relevant molecular pathways in neurons and glia derived from patients and healthy individuals. A prerequisite for such comparative studies are robust protocols that efficiently yield standardized populations of neural cell types. Here we show that long-term self-renewing neuroepithelial-like stem cells lt-NES cells derived from 3 hESC and 6 iPSC lines in two independent laboratories exhibit consistent characteristics including i continuous expandability in the presence of FGF2 and EGF; ii stable neuronal and glial differentiation competence; iii characteristic transcription factor profile; iv hindbrain specification amenable to regional patterning; v capacity to generate functionally mature human neurons. We further show that lt-NES cells are developmentally distinct from fetal tissue-derived radial glia-like stem cells. We propose that lt-NES cells provide an interesting tool for studying human neurodevelopment and may serve as a standard system to facilitate comparative analyses of hESC and hiPSC-derived neural cells from control and diseased genetic backgrounds.



Author: Anna Falk , Philipp Koch , Jaideep Kesavan, Yasuhiro Takashima, Julia Ladewig, Michael Alexander, Ole Wiskow, Jignesh Tailor, Mat

Source: http://plos.srce.hr/



DOWNLOAD PDF




Related documents