Time-Resolved Expression Profiling of the Nuclear Receptor Superfamily in Human AdipogenesisReport as inadecuate




Time-Resolved Expression Profiling of the Nuclear Receptor Superfamily in Human Adipogenesis - Download this document for free, or read online. Document in PDF available to download.

Background

The differentiation of fibroblast-like pre-adipocytes to lipid-loaded adipocytes is regulated by a network of transcription factors, the most prominent one being the nuclear receptor peroxisome proliferator-activated receptor PPAR γ. However, many of the other 47 members of the nuclear receptor superfamily have an impact on adipogenesis, which in human cells has not been investigated in detail.

Methodology-Principal Findings

We analyzed by quantitative PCR all human nuclear receptors at multiple time points during differentiation of SGBS pre-adipocytes. The earliest effect was the down-regulation of the genes RARG, PPARD, REV-ERBA, REV-ERBB, VDR and GR followed by the up-regulation of PPARG, LXRA and AR. These observations are supported with data from 3T3-L1 mouse pre-adipocytes and primary human adipocytes. Investigation of the effects of the individual differentiation mix components in short-term treatments and of their omission from the full mix showed that the expression levels of the early-regulated nuclear receptor genes were most affected by the glucocorticoid receptor GR ligand cortisol and the phosophodiesterase inhibitor IBMX. Interestingly, the effects of both compounds converged to repress the genes PPARD, REV-ERBA, REV-ERBB, VDR and GR, whereas cortisol and IBMX showed antagonistic interaction for PPARG, LXRA and AR causing a time lag in their up-regulation. We hypothesize that the well-known auto-repression of GR fine-tunes the detected early responses. Consistently, chromatin immunoprecipitation experiments showed that GR association increased on the transcription start sites of the genes RARG, REV-ERBB, VDR and GR.

Conclusions-Significance

Adipocyte differentiation is a process, in which many members of the nuclear receptor superfamily change their mRNA expression. The actions of cortisol and IBMX converged to repress several nuclear receptors early in differentiation, while up-regulation of other nuclear receptor genes showed a time lag due to antagonisms of the signals. Our results place GR and its ligand cortisol as central regulatory factors controlling early regulatory events in human adipogenesis that precedes the regulation of the later events by PPARG.



Author: Mari Lahnalampi, Merja Heinäniemi, Lasse Sinkkonen, Martin Wabitsch, Carsten Carlberg

Source: http://plos.srce.hr/



DOWNLOAD PDF




Related documents