Multisensor System for Isotemporal Measurements to Assess Indoor Climatic Conditions in Poultry FarmsReport as inadecuate




Multisensor System for Isotemporal Measurements to Assess Indoor Climatic Conditions in Poultry Farms - Download this document for free, or read online. Document in PDF available to download.

1

Institute of Animal Science and Technology, Universitat Politècnica de València, Camino de Vera s-n 46022 Valencia, Spain

2

Department of Construction Engineering and Civil Engineering Projects, Universitat Politècnica de València, Camino de Vera s-n 46022 Valencia, Spain

3

Department of Electronic Engineering, Universitat Politècnica de València, Camino de Vera s-n 46022, Valencia, Spain

4

Department of Applied Physics, Universitat Politècnica de València, Camino de Vera s-n 46022 Valencia, Spain

5

Center of Physical Technologies, Asociated Unity ICMM-CSIC-UPV, Universitat Politècnica de València, Av. de los Naranjos s-n. 46022 Valencia, Spain

6

Department of Statistical, Operation Research and Quality, Universitat Politècnica de València, Camino de Vera s-n 46022 Valencia, Spain





*

Author to whom correspondence should be addressed.



Abstract The rearing of poultry for meat production broilers is an agricultural food industry with high relevance to the economy and development of some countries. Periodic episodes of extreme climatic conditions during the summer season can cause high mortality among birds, resulting in economic losses. In this context, ventilation systems within poultry houses play a critical role to ensure appropriate indoor climatic conditions. The objective of this study was to develop a multisensor system to evaluate the design of the ventilation system in broiler houses. A measurement system equipped with three types of sensors: air velocity, temperature and differential pressure was designed and built. The system consisted in a laptop, a data acquisition card, a multiplexor module and a set of 24 air temperature, 24 air velocity and two differential pressure sensors. The system was able to acquire up to a maximum of 128 signals simultaneously at 5 second intervals. The multisensor system was calibrated under laboratory conditions and it was then tested in field tests. Field tests were conducted in a commercial broiler farm under four different pressure and ventilation scenarios in two sections within the building. The calibration curves obtained under laboratory conditions showed similar regression coefficients among temperature, air velocity and pressure sensors and a high goodness fit R2 = 0.99 with the reference. Under field test conditions, the multisensor system showed a high number of input signals from different locations with minimum internal delay in acquiring signals. The variation among air velocity sensors was not significant. The developed multisensor system was able to integrate calibrated sensors of temperature, air velocity and differential pressure and operated succesfully under different conditions in a mechanically-ventilated broiler farm. This system can be used to obtain quasi-instantaneous fields of the air velocity and temperature, as well as differential pressure maps to assess the design and functioning of ventilation system and as a verification and validation V&V system of Computational Fluid Dynamics CFD simulations in poultry farms. View Full-Text

Keywords: poultry building; sensors; air velocity; isotemporal measurements; multipoint measurements; troubleshooting poultry building; sensors; air velocity; isotemporal measurements; multipoint measurements; troubleshooting





Author: Eliseo Bustamante 1,2, Enrique Guijarro 3, Fernando-Juan García-Diego 4,5, Sebastián Balasch 6, Antonio Hospitaler 2 and Antonio G. Torres 1,*

Source: http://mdpi.com/



DOWNLOAD PDF




Related documents