Dynamic Performance Comparison of Two Kalman Filters for Rate Signal Direct Modeling and Differencing Modeling for Combining a MEMS Gyroscope Array to Improve AccuracyReport as inadecuate




Dynamic Performance Comparison of Two Kalman Filters for Rate Signal Direct Modeling and Differencing Modeling for Combining a MEMS Gyroscope Array to Improve Accuracy - Download this document for free, or read online. Document in PDF available to download.

1

Ministry of Education Key Laboratory of Micro and Nano Systems for Aerospace, Northwestern Polytechnical University, No. 127 Youyi West Road, Xi’an 710072, China

2

Xi’an Research Institute of High Technology, Hongqing Town, Xi’an 710025, China





*

Authors to whom correspondence should be addressed.



Academic Editor: Vittorio M. N. Passaro

Abstract In this paper, the performance of two Kalman filter KF schemes based on the direct estimated model and differencing estimated model for input rate signal was thoroughly analyzed and compared for combining measurements of a sensor array to improve the accuracy of microelectromechanical system MEMS gyroscopes. The principles for noise reduction were presented and KF algorithms were designed to obtain the optimal rate signal estimates. The input rate signal in the direct estimated KF model was modeled with a random walk process and treated as the estimated system state. In the differencing estimated KF model, a differencing operation was established between outputs of the gyroscope array, and then the optimal estimation of input rate signal was achieved by compensating for the estimations of bias drifts for the component gyroscopes. Finally, dynamic simulations and experiments with a six-gyroscope array were implemented to compare the dynamic performance of the two KF models. The 1σ error of the gyroscopes was reduced from 1.4558°-s to 0.1203°-s by the direct estimated KF model in a constant rate test and to 0.5974°-s by the differencing estimated KF model. The estimated rate signal filtered by both models could reflect the amplitude variation of the input signal in the swing rate test and displayed a reduction factor of about three for the 1σ noise. Results illustrate that the performance of the direct estimated KF model is much higher than that of the differencing estimated KF model, with a constant input signal or lower dynamic variation. A similarity in the two KFs’ performance is observed if the input signal has a high dynamic variation. View Full-Text

Keywords: MEMS gyroscope; Kalman filtering; sensor array; direct model; differencing model; performance comparison; optimal estimation MEMS gyroscope; Kalman filtering; sensor array; direct model; differencing model; performance comparison; optimal estimation





Author: Guangmin Yuan 1, Weizheng Yuan 1,* , Liang Xue 2, Jianbing Xie 1 and Honglong Chang 1,*

Source: http://mdpi.com/



DOWNLOAD PDF




Related documents