Sci-Fin: Visual Mining Spatial and Temporal Behavior Features from Social MediaReport as inadecuate


Sci-Fin: Visual Mining Spatial and Temporal Behavior Features from Social Media


Sci-Fin: Visual Mining Spatial and Temporal Behavior Features from Social Media - Download this document for free, or read online. Document in PDF available to download.

School of Computer Science and Engineering, University of Electronic Science and Technology of China, Chengdu 611731, China





*

Author to whom correspondence should be addressed.



Academic Editor: Yike Guo

Abstract Check-in records are usually available in social services, which offer us the opportunity to capture and analyze users’ spatial and temporal behaviors. Mining such behavior features is essential to social analysis and business intelligence. However, the complexity and incompleteness of check-in records bring challenges to achieve such a task. Different from the previous work on social behavior analysis, in this paper, we present a visual analytics system, Social Check-in Fingerprinting Sci-Fin, to facilitate the analysis and visualization of social check-in data. We focus on three major components of user check-in data: location, activity, and profile. Visual fingerprints for location, activity, and profile are designed to intuitively represent the high-dimensional attributes. To visually mine and demonstrate the behavior features, we integrate WorldMapper and Voronoi Treemap into our glyph-like designs. Such visual fingerprint designs offer us the opportunity to summarize the interesting features and patterns from different check-in locations, activities and users groups. We demonstrate the effectiveness and usability of our system by conducting extensive case studies on real check-in data collected from a popular microblogging service. Interesting findings are reported and discussed at last. View Full-Text

Keywords: visual mining; big data analysis; spatial and temporal behaviors; social media; Internet of things visual mining; big data analysis; spatial and temporal behaviors; social media; Internet of things





Author: Jiansu Pu * , Zhiyao Teng, Rui Gong, Changjiang Wen and Yang Xu

Source: http://mdpi.com/



DOWNLOAD PDF




Related documents