Bivariate Rainfall and Runoff Analysis Using Entropy and Copula TheoriesReport as inadecuate


Bivariate Rainfall and Runoff Analysis Using Entropy and Copula Theories


Bivariate Rainfall and Runoff Analysis Using Entropy and Copula Theories - Download this document for free, or read online. Document in PDF available to download.

1

Department of Civil Engineering, University of Akron, Akron, OH 44325, USA

2

Department of Biological and Agricultural Engineering, Texas A & M University, College Station, TX 77843, USA

3

Department of Civil and Environmental Engineering, Texas A & M University, College Station, TX 77843, USA





*

Author to whom correspondence should be addressed.



Abstract Multivariate hydrologic frequency analysis has been widely studied using: 1 commonly known joint distributions or copula functions with the assumption of univariate variables being independently identically distributed I.I.D. random variables; or 2 directly applying the entropy theory-based framework. However, for the I.I.D. univariate random variable assumption, the univariate variable may be considered as independently distributed, but it may not be identically distributed; and secondly, the commonly applied Pearson’s coefficient of correlation g is not able to capture the nonlinear dependence structure that usually exists. Thus, this study attempts to combine the copula theory with the entropy theory for bivariate rainfall and runoff analysis. The entropy theory is applied to derive the univariate rainfall and runoff distributions. It permits the incorporation of given or known information, codified in the form of constraints and results in a universal solution of univariate probability distributions. The copula theory is applied to determine the joint rainfall-runoff distribution. Application of the copula theory results in: i the detection of the nonlinear dependence between the correlated random variables-rainfall and runoff, and ii capturing the tail dependence for risk analysis through joint return period and conditional return period of rainfall and runoff. The methodology is validated using annual daily maximum rainfall and the corresponding daily runoff discharge data collected from watersheds near Riesel, Texas small agricultural experimental watersheds and Cuyahoga River watershed, Ohio. View Full-Text

Keywords: Shannon entropy; principle of maximum entropy; rainfall; runoff; univariate probability distribution; copulas Shannon entropy; principle of maximum entropy; rainfall; runoff; univariate probability distribution; copulas





Author: Lan Zhang 1,* and Vijay P. Singh 2,3

Source: http://mdpi.com/



DOWNLOAD PDF




Related documents