X-ray radiation of the jets and the supercritical accretion disk in SS 433Report as inadecuate



 X-ray radiation of the jets and the supercritical accretion disk in SS 433


X-ray radiation of the jets and the supercritical accretion disk in SS 433 - Download this document for free, or read online. Document in PDF available to download.

Download or read this book online for free in PDF: X-ray radiation of the jets and the supercritical accretion disk in SS 433
The observed X-ray luminosity of SS 433 is ~10^36 erg-s, it is known that all the radiation is formed in the famous SS 433 jets. The bolometric luminosity of SS 433 is ~10^40 erg-s, and originally the luminosity must be realized in X-rays. The original radiation is probably thermalized in the supercritical accretion disk wind, however the missing more than four orders of magnitude is surprising. We have analysed the XMM-Newton spectra of SS 433 using a model of adiabatically and radiatively cooling X-ray jets. The multi-temperature thermal jet model reproduces very well the strongest observed emission lines, but it can not reproduce the continuum radiation and some spectral features. We have found a notable contribution of ionized reflection to the spectrum in the energy range from 3 to 12 keV. The reflected spectrum is an evidence of the supercritical disk funnel, where the illuminating radiation comes from deeper funnel regions, to be further reflected in the outer visible funnel walls. The illuminating spectrum is similar to that observed in ULXs, its luminosity has to be no less than ~10^39 erg-s. A soft excess has been detected, that does not depend on the thermal jet model details. It may be represented as a BB with a temperature of ~0.1 keV and luminosity of ~3*10^37 erg-s. The soft spectral component has about the same parameters as those found in ULXs.



Author: S. Fabrika; A. Medvedev

Source: https://archive.org/







Related documents