Vol 7: Relative contributions of neutral and non-neutral genetic differentiation to inform conservation of steelhead trout across highly variable landscapes.Report as inadecuate



 Vol 7: Relative contributions of neutral and non-neutral genetic differentiation to inform conservation of steelhead trout across highly variable landscapes.


Vol 7: Relative contributions of neutral and non-neutral genetic differentiation to inform conservation of steelhead trout across highly variable landscapes. - Download this document for free, or read online. Document in PDF available to download.

Download or read this book online for free in PDF: Vol 7: Relative contributions of neutral and non-neutral genetic differentiation to inform conservation of steelhead trout across highly variable landscapes.
This article is from Evolutionary Applications, volume 7.AbstractMounting evidence of climatic effects on riverine environments and adaptive responses of fishes have elicited growing conservation concerns. Measures to rectify population declines include assessment of local extinction risk, population ecology, viability, and genetic differentiation. While conservation planning has been largely informed by neutral genetic structure, there has been a dearth of critical information regarding the role of non-neutral or functional genetic variation. We evaluated genetic variation among steelhead trout of the Columbia River Basin, which supports diverse populations distributed among dynamic landscapes. We categorized 188 SNP loci as either putatively neutral or candidates for divergent selection non-neutral using a multitest association approach. Neutral variation distinguished lineages and defined broad-scale population structure consistent with previous studies, but fine-scale resolution was also detected at levels not previously observed. Within distinct coastal and inland lineages, we identified nine and 22 candidate loci commonly associated with precipitation or temperature variables and putatively under divergent selection. Observed patterns of non-neutral variation suggest overall climate is likely to shape local adaptation e.g., potential rapid evolution of steelhead trout in the Columbia River region. Broad geographic patterns of neutral and non-neutral variation demonstrated here can be used to accommodate priorities for regional management and inform long-term conservation of this species.



Author: Matala, Andrew P; Ackerman, Michael W; Campbell, Matthew R; Narum, Shawn R

Source: https://archive.org/







Related documents