Quantization via Empirical Divergence MaximizationReport as inadecuate



 Quantization via Empirical Divergence Maximization


Quantization via Empirical Divergence Maximization - Download this document for free, or read online. Document in PDF available to download.

Download or read this book online for free in PDF: Quantization via Empirical Divergence Maximization
Empirical divergence maximization EDM refers to a recently proposed strategy for estimating f-divergences and likelihood ratio functions. This paper extends the idea to empirical vector quantization where one seeks to empirically derive quantization rules that maximize the Kullback-Leibler divergence between two statistical hypotheses. We analyze the estimators error convergence rate leveraging Tsybakovs margin condition and show that rates as fast as 1-n are possible, where n equals the number of training samples. We also show that the Flynn and Gray algorithm can be used to efficiently compute EDM estimates and show that they can be efficiently and accurately represented by recursive dyadic partitions. The EDM formulation have several advantages. First, the formulation gives access to the tools and results of empirical process theory that quantify the estimators error convergence rate. Second, the formulation provides a previously unknown derivation for the Flynn and Gray algorithm. Third, the flexibility it affords allows one to avoid a small-cell assumption common in other approaches. Finally, we illustrate the potential use of the method through an example.



Author: Michael A. Lexa

Source: https://archive.org/







Related documents