Quantum annealing with more than one hundred qubitsReport as inadecuate



 Quantum annealing with more than one hundred qubits


Quantum annealing with more than one hundred qubits - Download this document for free, or read online. Document in PDF available to download.

Download or read this book online for free in PDF: Quantum annealing with more than one hundred qubits
At a time when quantum effects start to pose limits to further miniaturisation of devices and the exponential performance increase due to Moores law, quantum technology is maturing to the point where quantum devices, such as quantum communication systems, quantum random number generators and quantum simulators, may be built with powers exceeding the performance of classical computers. A quantum annealer, in particular, finds solutions to hard optimisation problems by evolving a known initial configuration towards the ground state of a Hamiltonian that encodes an optimisation problem. Here, we present results from experiments on a 108 qubit D-Wave One device based on superconducting flux qubits. The correlations between the device and a simulated quantum annealer demonstrate that the device performs quantum annealing: unlike classical thermal annealing it exhibits a bimodal separation of hard and easy problems, with small-gap avoided level crossings characterizing the hard problems. To assess the computational power of the quantum annealer we compare it to optimised classical algorithms. We discuss how quantum speedup could be detected on devices scaled to a larger number of qubits where the limits of classical algorithms are reached.



Author: Sergio Boixo; Troels F. Rønnow; Sergei V. Isakov; Zhihui Wang; David Wecker; Daniel A. Lidar; John M. Martinis; Matthias Troyer

Source: https://archive.org/







Related documents