La axiomatización y los números naturales i Report as inadecuate




La axiomatización y los números naturales i - Download this document for free, or read online. Document in PDF available to download.



Desde hace un siglo, existe la tendencia a reducir los diversos conceptos de la matemática a conceptos puramente lógicos. Basta recordar los nombres clásicos de Dedekind,Cantor,Frege, Russell, Zermelo, y los de los numerosos y famosos lógicos matemáticos de hoy en día, y considerar los muchos sistemas lógicos que se han construido, para ver el gran interés que hay por este problema de reducción

Tipo de documento: Artículo - Article

Palabras clave: Teorías axiomáticas de conjuntos, axiomas, disciplinas abstractas, relación binaria, números naturales y conjuntos





Source: http://www.bdigital.unal.edu.co


Teaser



MATEMATICAS THE CONJUGATES PURAS AND PRECONJUGATES OF LINEAR OPERATORS by KATHY an d S.
Gol dberg, studying study T when one can gain know Iedge Lebesgue operates remarks space spaces represent between a linear and operator otherwi se noted x, y, x their and .8(T) and v difficult to (2 .
) is rather y dualspaces, X and Roo Y. and For example, e is a map between to operators X and Y T by 1 on:t:-,, the al mo st everywhere. discussion X to applicable of fun ction s bounded and eoo,since 2-- operator it is at times spaces, from by A.
E.
Taylor a I inear is a map between are also In the following linear tQ)into study about THcwever, of an operator These ~1 operator While the conjugate the preconjugate and PRE CON JUG ATE T isamapfrom the preconjugate E.
U.
A. With the aid of a systematic its conjugate complicated. X, THE De fin i t i o n . 1. FORBES cle Marylancl. ( Universiclacl 1. K. Y will dualor always adjoint spcce s.i T will will be the domain will be elements of be normed of T. X, Y, X Unless and Y respectively. Definition. for all x ~ Let In X. words Let implies = be its {y6Y continuous like to define = x A be a linear T ff(T) the unique F A subset operator v extension the preconjugate, in X if xx = 0 O. conjugate - F of X is total A mapping operator X to Y with.tY(A) mapping is continuous Y to X. on d(A)}, of v T, of T mapping- A to the whole of X to and dense In other Ty-is X.
We would Y.T should 3 be equal v to A or at least A x -: A y x xfi:f}(T) = Tyx if there and we define for all exists YEY T x = y. that the domain a linear the preconjugate, An element vv that Then x T, of X lies E we say for all defined y~.b(T), we require linear with ff(T) X to total spaces and Y-, Then in Y and is defined of T if there as follows. exi st...






Related documents