On Levi extensions of nilpotent Lie algebrasReport as inadecuate



 On Levi extensions of nilpotent Lie algebras


On Levi extensions of nilpotent Lie algebras - Download this document for free, or read online. Document in PDF available to download.

Download or read this book online for free in PDF: On Levi extensions of nilpotent Lie algebras
Levis theorem decomposes any arbitrary Lie algebra over a field of characteristic zero, as a direct sum of a semisimple Lie algebra named Levi factor and its solvable radical. Given a solvable Lie algebra $R$, a semisimple Lie algebra $S$ is said to be a Levi extension of $R$ in case a Lie structure can be defined on the vector space $S\oplus R$. The assertion is equivalent to $ hoS\subseteq \mathrm{Der}R$, where $\mathrm{Der}R$ is the derivation algebra of $R$, for some representation $ ho$ of $S$ onto $R$. Our goal in this paper, is to present some general structure results on nilpotent Lie algebras admitting Levi extensions based on free nilpotent Lie algebras and modules of semisimple Lie algebras. In low nilpotent index a complete classification will be given. The results are based on linear algebra methods and leads to computational algorithms.



Author: Pilar Benito; Daniel de-la-ConcepciĆ³n

Source: https://archive.org/







Related documents