On the Doubt about Margin Explanation of BoostingReport as inadecuate

 On the Doubt about Margin Explanation of Boosting

On the Doubt about Margin Explanation of Boosting - Download this document for free, or read online. Document in PDF available to download.

Download or read this book online for free in PDF: On the Doubt about Margin Explanation of Boosting
Margin theory provides one of the most popular explanations to the success of \texttt{AdaBoost}, where the central point lies in the recognition that \textit{margin} is the key for characterizing the performance of \texttt{AdaBoost}. This theory has been very influential, e.g., it has been used to argue that \texttt{AdaBoost} usually does not overfit since it tends to enlarge the margin even after the training error reaches zero. Previously the \textit{minimum margin bound} was established for \texttt{AdaBoost}, however, \cite{Breiman1999} pointed out that maximizing the minimum margin does not necessarily lead to a better generalization. Later, \cite{Reyzin:Schapire2006} emphasized that the margin distribution rather than minimum margin is crucial to the performance of \texttt{AdaBoost}. In this paper, we first present the \textit{$k$th margin bound} and further study on its relationship to previous work such as the minimum margin bound and Emargin bound. Then, we improve the previous empirical Bernstein bounds \citep{Maurer:Pontil2009,Audibert:Munos:Szepesvari2009}, and based on such findings, we defend the margin-based explanation against Breimans doubts by proving a new generalization error bound that considers exactly the same factors as \cite{Schapire:Freund:Bartlett:Lee1998} but is sharper than \cite{Breiman1999}s minimum margin bound. By incorporating factors such as average margin and variance, we present a generalization error bound that is heavily related to the whole margin distribution. We also provide margin distribution bounds for generalization error of voting classifiers in finite VC-dimension space.

Author: Wei Gao; Zhi-Hua Zhou

Source: https://archive.org/


Related documents