Vol 8: Kernel-PCA data integration with enhanced interpretability.Report as inadecuate



 Vol 8: Kernel-PCA data integration with enhanced interpretability.


Vol 8: Kernel-PCA data integration with enhanced interpretability. - Download this document for free, or read online. Document in PDF available to download.

Download or read this book online for free in PDF: Vol 8: Kernel-PCA data integration with enhanced interpretability.
This article is from BMC Systems Biology, volume 8.AbstractBackground: Nowadays, combining the different sources of information to improve the biological knowledge available is a challenge in bioinformatics. One of the most powerful methods for integrating heterogeneous data types are kernel-based methods. Kernel-based data integration approaches consist of two basic steps: firstly the right kernel is chosen for each data set; secondly the kernels from the different data sources are combined to give a complete representation of the available data for a given statistical task. Results: We analyze the integration of data from several sources of information using kernel PCA, from the point of view of reducing dimensionality. Moreover, we improve the interpretability of kernel PCA by adding to the plot the representation of the input variables that belong to any dataset. In particular, for each input variable or linear combination of input variables, we can represent the direction of maximum growth locally, which allows us to identify those samples with higher-lower values of the variables analyzed. Conclusions: The integration of different datasets and the simultaneous representation of samples and variables together give us a better understanding of biological knowledge.



Author: Reverter, Ferran; Vegas, Esteban; Oller, Josep M

Source: https://archive.org/



DOWNLOAD PDF




Related documents