A non elliptic spectral problem related to the analysis of superconductive micro-strip linesReport as inadecuate




A non elliptic spectral problem related to the analysis of superconductive micro-strip lines - Download this document for free, or read online. Document in PDF available to download.

1 POEMS - Propagation des Ondes : Étude Mathématique et Simulation Inria Saclay - Ile de France, ENSTA ParisTech UMA - Unité de Mathématiques Appliquées, CNRS - Centre National de la Recherche Scientifique : UMR7231

Abstract : This paper is devoted to the spectral analysis of a non elliptic operator A , deriving from the study of superconducting micro-strip lines. Once a sufficient condition for the self-adjointness of operator A has been derived, we determine its continuous spectrum. Then, we show that A is unbounded from below and that it has a sequence of negative eigenvalues tending to -∞. Using the Min-Max principle, a characterization of its positive eigenvalues is given. Thanks to this characterization, some conditions on the geometrical large width and physical large dielectric permittivity in modulus properties of the strip that ensure the existence of positive eigenvalues are derived. Finally, we analyze the asymptotic behavior of the eigenvalues of A as the dielectric permittivity of the strip goes to -∞.





Author: Anne-Sophie Bonnet-Ben Dhia - Karim Ramdani

Source: https://hal.archives-ouvertes.fr/



DOWNLOAD PDF




Related documents