Energy Bounds for the Two-Dimensional Navier-Stokes Equations in an Infinite CylinderReport as inadecuate




Energy Bounds for the Two-Dimensional Navier-Stokes Equations in an Infinite Cylinder - Download this document for free, or read online. Document in PDF available to download.

* Corresponding author 1 IF - Institut Fourier 2 University of Zagreb

Abstract : We consider the incompressible Navier-Stokes equations in the cylinder R × T, with no exterior forcing, and we investigate the long-time behavior of solutions arising from merely bounded initial data. Although we do not prove that such solutions stay uniformly bounded for all times, we show that they converge in an appropriate sense to the family of spatially homogeneous equilibria as t → ∞. Convergence is uniform on compact subdomains, and holds for all times except on a sparse subset of the positive real axis. We also improve the known upper bound on the L ∞ norm of the solutions, although our results in this direction are not optimal. Our approach is based on a detailed study of the local energy dissipation in the system, in the spirit of a recent work devoted to a class of dissipative partial differential equations with a formal gradient structure 5. Keywords: Navier-Stokes equations, localized energy estimates, extended dissipative system. MSC2010: 35Q30, 35B40, 76D05





Author: Thierry Gallay - Sinisa Slijepcevic -

Source: https://hal.archives-ouvertes.fr/



DOWNLOAD PDF




Related documents