Data management for prospective research studies using SAS®softwareReport as inadecuate




Data management for prospective research studies using SAS®software - Download this document for free, or read online. Document in PDF available to download.

BMC Medical Research Methodology

, 8:61

First Online: 11 September 2008Received: 10 March 2008Accepted: 11 September 2008

Abstract

BackgroundMaintaining data quality and integrity is important for research studies involving prospective data collection. Data must be entered, erroneous or missing data must be identified and corrected if possible, and an audit trail created.

MethodsUsing as an example a large prospective study, the Missouri Lower Respiratory Infection LRI Project, we present an approach to data management predominantly using SAS software. The Missouri LRI Project was a prospective cohort study of nursing home residents who developed an LRI. Subjects were enrolled, data collected, and follow-ups occurred for over three years. Data were collected on twenty different forms. Forms were inspected visually and sent off-site for data entry. SAS software was used to read the entered data files, check for potential errors, apply corrections to data sets, and combine batches into analytic data sets. The data management procedures are described.

ResultsStudy data collection resulted in over 20,000 completed forms. Data management was successful, resulting in clean, internally consistent data sets for analysis. The amount of time required for data management was substantially underestimated.

ConclusionData management for prospective studies should be planned well in advance of data collection. An ongoing process with data entered and checked as they become available allows timely recovery of errors and missing data.

Electronic supplementary materialThe online version of this article doi:10.1186-1471-2288-8-61 contains supplementary material, which is available to authorized users.

Download fulltext PDF



Author: Robin L Kruse - David R Mehr

Source: https://link.springer.com/







Related documents