Modelling phagosomal lipid networks that regulate actin assemblyReport as inadecuate

Modelling phagosomal lipid networks that regulate actin assembly - Download this document for free, or read online. Document in PDF available to download.

BMC Systems Biology

, 2:107

First Online: 05 December 2008Received: 21 October 2008Accepted: 05 December 2008


BackgroundWhen purified phagosomes are incubated in the presence of actin under appropriate conditions, microfilaments start growing from the membrane in a process that is affected by ATP and the lipid composition of the membrane. Isolated phagosomes are metabolically active organelles that contain enzymes and metabolites necessary for lipid interconversion. Hence, addition of ATP, lipids, and actin to the system alter the steady-state composition of the phagosomal membrane at the same time that the actin nucleation is initiated. Our aim was to model all these processes in parallel.

ResultsWe compiled detailed experimental data on the effects of different lipids and ATP on actin nucleation and we investigated experimentally lipid interconversion and ATP metabolism in phagosomes by using suitable radioactive compounds.

In a first step, a complex lipid network interconnected by chemical reactions catalyzed by known enzymes was modelled in COPASI Complex Pathway Simulator. However, several lines of experimental evidence indicated that only the phosphatidylinositol branch of the network was active, an observation that dramatically reduced the number of parameters in the model. The results also indicated that a lipid network-independent ATP-consuming activity should be included in the model. When this activity was introduced, the set of differential equations satisfactorily reproduced the experimental data. On the other hand, a molecular mechanism connecting membrane lipids, ATP, and the actin nucleation process is still missing. We therefore adopted a phenomenological black-box approach to represent the empirical observations. We proposed that lipids and ATP influence the dynamic interconversion between active and inactive actin nucleation sites. With this simple model, all the experimental data were satisfactorily fitted with a single positive parameter per lipid and ATP.

ConclusionBy establishing an active -dialogue- between an initial complex model and experimental observations, we could narrow the set of differential equations and parameters required to characterize the time-dependent changes of metabolites influencing actin nucleation on phagosomes. For this, the global model was dissected into three sub-models: ATP consumption, lipid interconversion, and nucleation of actin on phagosomal membranes. This scheme allowed us to describe this complex system with a relatively small set of differential equations and kinetic parameters that satisfactorily reproduced the experimental data.

Electronic supplementary materialThe online version of this article doi:10.1186-1752-0509-2-107 contains supplementary material, which is available to authorized users.

Mark Kühnel, Luis S Mayorga contributed equally to this work.

Download fulltext PDF

Author: Mark Kühnel - Luis S Mayorga - Thomas Dandekar - Juilee Thakar - Roland Schwarz - Elsa Anes - Gareth Griffiths - Jens Re


Related documents