# JLip versus Sobolev Spaces on a Class of Self-Similar Fractal Foliages

JLip versus Sobolev Spaces on a Class of Self-Similar Fractal Foliages - Download this document for free, or read online. Document in PDF available to download.

1 LJLL - Laboratoire Jacques-Louis Lions 2 IRMAR - Institut de Recherche MathÃ©matique de Rennes

Abstract : For a class of self-similar sets $\Gamma^\infty$ in $\R^2$, supplied with a probability measure $\mu$ called the self-similar measure, we investigate if the $B s^{q,q}\Gamma^\infty$ regularity of a function can be characterized using the coefficients of its expansion in the Haar wavelet basis. Using the the Lipschitz spaces with jumps recently introduced by Jonsson, the question can be rephrased: when does $B s^{q,q}\Gamma^\infty$ coincide with $JLips,q,q;0;\Gamma^\infty$? When $\Gamma^\infty$ is totally disconnected, this question has been positively answered by Jonsson for all $s,q$, $00$, $1\le p,q

Author: ** Yves Achdou - Thibaut Deheuvels - Nicoletta Tchou - **

Source: https://hal.archives-ouvertes.fr/