en fr Experimental weathering rates of aluminium-silicates Vitesses daltération expérimentales des silicates daluminium Report as inadecuate

en fr Experimental weathering rates of aluminium-silicates Vitesses daltération expérimentales des silicates daluminium - Download this document for free, or read online. Document in PDF available to download.

1 GET - Géosciences Environnement Toulouse

Abstract : The chemical weathering of primary rocks and minerals in natural systems has a major impact on soil development and its composition. Chemical weathering is driven to a large extent by mineral dissolution. Through mineral dissolution, elements are released into groundwater and can readily react to precipitate secondary minerals such as clays, zeolites, and carbonates. Carbonates form from divalent cations e.g. Ca, Fe and Mg and CO2, and kaolin clay and gibbsite formation is attributed to the weathering of aluminium-rich minerals, most notably the feldspars. The CarbFix Project in Hellisheiði SW-Iceland aims to use natural weathering processes to form carbonate minerals by the re-injection of CO2 from a geothermal power plant back into surrounding basaltic rocks. This process is driven by the dissolution of basaltic rocks, rich in divalent cations, which can combine with injected CO2 to form and precipitate carbonates. This thesis focuses on the dissolution behaviour of Stapafell crystalline basalt, which consists of three major phases plagioclase, pyroxene, and olivine and is rich in divalent cations. Steady-state element release rates from crystalline basalt at far-from-equilibrium conditions were measured at pH from 2 to 11 and temperatures from 5° to 75° C in mixed-flow reactors. Steady-state Si and Ca release rates exhibit a U-shaped variation with pH, where rates decrease with increasing pH at acid condition but increase with increasing pH at alkaline conditions. Silicon release rates from crystalline basalt are comparable to Si release rates from basaltic glass of the same chemical composition at low pH and temperatures ≥25°C but slower at alkaline pH and temperatures ≥50°C. In contrast, Mg and Fe release rates decrease continuously with increasing pH at all temperatures. This behaviour is interpreted to stem from the contrasting dissolution behaviours of the three major minerals comprising the basalt: plagioclase, pyroxene, and olivine. Element release rates estimated from the sum of the volume fraction normalized dissolution rates of plagioclase, pyroxene, and olivine are within one order of magnitude of those measured in this study. In addition, these experimental results show that during injection of CO2-charged waters with pH close to 3.6, crystalline basalt preferentially releases Mg and Fe relative to Ca to the fluid phase. The injection of acidic CO2-charged fluids into crystalline basaltic rocks may therefore favour the formation of Mg and Fe carbonates rather than calcite at acidic to neutral conditions. Plagioclase is the most abundant phase in crystalline basalts and thus influences strongly its reactivity. Plagioclase dissolution rates based on Si release show a common U-shaped behaviour as a function of pH where rates decrease with increasing pH at acid condition but increase with increasing pH at alkaline conditions. Constant pH plagioclase dissolution rates increase with increasing anorthite content at acid conditions, in agreement with literature findings. Interpretation and data fitting suggests that plagioclase dissolution rates are consistent with their control by the detachment of Si-rich activated complexes formed by the removal of Al from the mineral framework. Most notably, compared with previous assumptions, plagioclase dissolution rates are independent of plagioclase composition at alkaline conditions, e.g. anorthite-rich plagioclase dissolution rates increase with increasing pH at alkaline conditions. At such conditions rapid plagioclase dissolution rates likely dominate divalent metal release from crystalline basalts to the fluids phase due to its high Ca content. Gibbsite is commonly the first mineral formed during low temperature dissolution of plagioclase. Gibbsite is an aluminium-hydroxide that is found in various soils as well as the dominant phase in many bauxite ores. Gibbsite precipitation rates were measured in closed system reactors at alkaline condition, both at 25 °C and 80 °C as a function of fluid saturation state. Analyses of the solids demonstrate that gibbsite precipitation occurred in all experiments. The comparison of gibbsite precipitation to the dissolution rates of plagioclase at pH 11 shows that the rates are close to equal. The precipitation rates of gibbsite, however, decrease faster with decreasing pH than plagioclase dissolution rates. As such it seem likely that plagioclase dissolution is faster than gibbsite precipitation at near to neutral pH, and the relatively slow rate of gibbsite precipitation influences plagioclase weathering in many Earth surface systems. Kaolinite is commonly the second secondary mineral formed during low temperature dissolution of plagioclase. Kaolinite precipitation rates were measured in mixed flow reactors as a function of fluid saturation state at pH=4 and 25 °C. In total eight long-term precipitation experiments were performed in fluids mildly supersaturated with respect to kaolinite, together with a known quantity of cleaned low defect Georgia Kaolinite as seeds. Measured kaolinite precipitation rates are relatively slow compared with plagioclase dissolution rates. This observation suggests that kaolinite formation during weathering is limited by its precipitation rates rather than by the availability of aqueous species sourced from plagioclase dissolution. Taken together the results of this study provide some of the fundamental scientific basic for predicting the rates and consequences of crystalline basalt and plagioclase dissolution at both the Earth-s surface and during the near surface injection of CO2 as part of carbon storage efforts. Results indicate that although gibbsite precipitation rates are relatively rapid, the relatively slow precipitation rates of kaolinite may be the process controlling the formation of this mineral at the Earth-s surface. This observation highlights the need to further quantify this secondary mineral precipitation rates at conditions typical at the Earth-s surface. Moreover, as the composition of divalent metals released from crystalline basalts varies significantly with pH, CO2 carbonation in basalt should yield a systematic variation in the identity of carbonate and zeolite minerals precipitated with distance from the injection site. This latter conclusion can be tested directly as part of the currently on-going CarbFix project in Hellisheiði, Iceland.

Résumé : L-altération chimique des roches primaires et des minéraux dans les systèmes naturels a un impact majeur sur la formation des sols et leur composition. L-altération chimique est largement pilotée par la dissolution des minéraux. Les éléments chimiques libérés dans les eaux souterraines par la dissolution des minéraux réagissent facilement pour former des minéraux secondaires comme les argiles, zéolites et carbonates. Les carbonates se forment par réaction des cations divalents Ca, Fe et Mg avec CO2 dissous tandis que la formation des kaolins et de la gibbsite est attribuée à l-altération des minéraux riches en aluminium, le plus souvent les feldspaths. Le projet Carbfix à Hellisheiði sud-ouest de l-Islande a pour but d-utiliser les processus d-altération naturelle pour former des minéraux carbonatés par réinjection dans les roches basaltiques environnantes de CO2 provenant d-une centrale géothermique. Ce processus trouve son origine dans la dissolution des roches basaltiques riches en cations divalents Ca, Fe et Mg qui se combinent au CO2 injecté pour former des minéraux carbonatés. Cette thèse est centrée sur la dissolution du basalte cristallin de Stapafell qui est composé essentiellement de trois phases minérales plagioclase, pyroxène et olivine et qui est riche en cations divalents. La vitesse de libération des éléments du basalte à l-état stationnaire et loin de l-équilibre a été mesurée dans des réacteurs à circulation à des pH de 2 à 12 et des températures de 5 à 75°C. Les vitesses de libération de Si et Ca à l-état stationnaire présentent une variation en fonction du pH en forme de U avec une diminution des vitesses lorsque le pH augmente en conditions acides et une augmentation avec le pH en conditions alcalines. Les vitesses de libération du silicium par le basalte cristallin sont comparables à celles par le verre basaltique de même composition chimique aux faibles pH et aux températures ≥ 25°C mais elles sont plus lentes aux pH alcalins et aux températures ≥ 50°C. Par contre, les vitesses de libération de Mg et Fe diminuent de manière monotone avec l-accroissement du pH à toutes les températures. Ce comportement a pour cause les variations contrastées, en fonction du pH, des vitesses de dissolution des trois minéraux constitutifs du basalte: plagioclase, olivine et pyroxène. Les vitesses de libération des éléments déduites de la somme des vitesses de dissolution du plagioclase, pyroxène et olivine normalisées à la fraction volumique de ces minéraux sont, à un ordre de grandeur près, les mêmes que celles mesurées dans cette étude. En outre, les résultats expérimentaux montrent que, durant l-injection d-eaux chargées en CO2 de pH proche de 3.6, le basalte cristallin libère préférentiellement Mg et Fe en solution par rapport à Ca. L-injection de fluides acides chargés en CO2 dans des roches cristallines basaltiques peut donc favoriser la formation de carbonates de Mg et Fe aux dépends de la calcite aux conditions de pH acides à neutres. Le plagioclase, qui est la phase la plus abondante du basalte, influence fortement la réactivité de ce dernier. La vitesse de dissolution du plagioclase, basée sur la libération de la silice, présente une variation en forme de U en fonction du pH, diminuant lorsque le pH augmente aux conditions acides mais augmentant avec le pH aux conditions alcalines. En accord avec les données de la littérature, la vitesse de dissolution du plagioclase à pH constant, en conditions acides, augmente avec sa teneur en anorthite. L-interprétation et le fit des données obtenues suggèrent que la vitesse de dissolution du plagioclase est contrôlée par la décomposition d-un complexe activé riche en silice, formé par le départ de Al de la structure du minéral. Le plus remarquable, par comparaison aux hypothèses antérieures, est que la vitesse de dissolution du plagioclase en conditions alcalines est indépendante de sa teneur en anorthite - e.g. les vitesses de dissolution des plagioclases riches en anorthite augmentent avec le pH aux conditions alcalines. A ces conditions, il est probable que la vitesse de dissolution rapide du plagioclase domine, en raison de sa forte teneur en Ca, la libération vers la phase fluide des cations divalents du basalte cristallin. La gibbsite est généralement le premier minéral qui précipite lors de la dissolution du plagioclase. C-est un hydroxyde d-aluminium que l-on trouve dans divers sols et qui est aussi la phase principale des minerais de bauxite. Les vitesses de précipitation de la gibbsite ont été mesurées dans des réacteurs fermés, en conditions alcalines à 25 et 80°C, en fonction de l-état de saturation du fluide. Les analyses des solides après réaction ont démontré que la précipitation de gibbsite s-est produite dans toutes les expériences. L-interprétation de l-évolution dans le temps de la chimie du fluide réactif fournit des vitesses de précipitation de la gibbsite qui sont près des vitesses de dissolution du plagioclase. En plus, des vitesses de précipitation de la gibbsite diminuent plus rapidement que des vitesses de dissolution du plagioclase quand le pH descende. Ceci suggère que l-étape limitant de l-altération du plagioclase sur la surface de la terre est plutôt la consommation d-Al par formation de la gibbsite que la dissolution même du plagioclase. La kaolinite est en général le second minéral formé après la gibbsite lors de la dissolution du plagioclase à basse température. Les vitesses de précipitation de la kaolinite ont été mesurées dans des réacteurs à circulation à pH = 4 et t = 25°C, en fonction de l-état de saturation du fluide. Au total, 8 expériences de précipitation de longues durées ont été réalisées dans des fluides légèrement supersaturés par rapport à la kaolinite, en utilisant comme germes pour la précipitation une quantité connue de de kaolinite de Géorgie KGa-1b contenant peu de défauts et préalablement nettoyée. Les vitesses de précipitation de kaolinite mesurées sont relativement lentes comparées aux vitesses de dissolution du plagioclase. Cette observation suggère que la formation de kaolinite lors de l-altération est limitée par sa vitesse de précipitation plutôt que par que la disponibilité en Al et Si issus de la dissolution du plagioclase. L-ensemble des résultats de cette étude fournit un certain nombre de principes scientifiques de base nécessaires à la prédiction des vitesses et des conséquences de la dissolution du basalte cristallin et du plagioclase à la surface de la Terre et lors de l-injection du CO2 à proximité de la surface dans le cadre des efforts de stockage du carbone. Les résultats obtenus indiquent, bien que les vitesses de précipitation de la gibbsite soient relativement rapides, que la vitesse de précipitation relativement lente de la kaolinite peut être le processus contrôlant la formation de ce minéral à la surface de la Terre. Cette observation souligne la nécessité de poursuivre la quantification de la précipitation de ce minéral secondaire aux conditions typiques de la surface de la Terre. En outre, comme les proportions des différents métaux divalents libérés par les basaltes cristallins varient sensiblement avec le pH, la carbonatation des basaltes doit produire un changement systématique de l-identité des minéraux carbonatés et des zéolites précipités en fonction de la distance au puits d-injection. Cette dernière conclusion pourra être directement testée dans le cadre du projet CarbFix actuellement conduit à Hellisheiði en Islande.

keyword : Crystalline basalt dissolution plagioclase dissolution gibbsite precipitation kaolinite precipitation CO2 sequestration Dissolution basalte crystalline dissolution plagioclase aluminium silicate weathering precipitation of secondary aluminium minerals precipitation gibbsite precipitation kaolinite sequestration CO2 carbFix

Author: Snorri Gudbrandsson -

Source: https://hal.archives-ouvertes.fr/


Related documents