Modular Las Vegas Algorithms for Polynomial Absolute FactorizationReport as inadecuate

Modular Las Vegas Algorithms for Polynomial Absolute Factorization - Download this document for free, or read online. Document in PDF available to download.

* Corresponding author 1 GALAAD - Geometry, algebra, algorithms CRISAM - Inria Sophia Antipolis - Méditerranée , UNS - Université Nice Sophia Antipolis, CNRS - Centre National de la Recherche Scientifique : UMR6621 2 IMT - Institut de Mathématiques de Toulouse UMR5219

Abstract : Let $fX,Y \in \ZZX,Y$ be an irreducible polynomial over $\QQ$. We give a Las Vegas absolute irreducibility test based on a property of the Newton polytope of $f$, or more precisely, of $f$ modulo some prime integer $p$. The same idea of choosing a $p$ satisfying some prescribed properties together with $LLL$ is used to provide a new strategy for absolute factorization of $fX,Y$. We present our approach in the bivariate case but the techniques extend to the multivariate case. Maple computations show that it is efficient and promising as we are able to factorize some polynomials of degree up to 400.

Keywords : Absolute factorization modular computations LLL algorithm Newton polytope

Author: Cristina Bertone - Guillaume Chèze - André Galligo -



Related documents