# The algebra of the parallel endomorphisms of a germ of pseudo-Riemannian metric

The algebra of the parallel endomorphisms of a germ of pseudo-Riemannian metric - Download this document for free, or read online. Document in PDF available to download.

1 IRMA - Institut de Recherche Mathématique Avancée

Abstract : On a pseudo-Riemannian manifold M,g, some fields of endomorphisms i.e. sections of EndTM may be parallel for g. They form an associative algebra E, which is also the commutant of the holonomy group of g. As any associative algebra, E is the sum of its radical and of a semi-simple algebra S. This S may be of eight different types, see my article -The algebra of the parallel endomorphisms of a germ of pseudo-Riemannian metric: semi-simple part-. Then, for any self adjoint nilpotent element N of the commutant of such an S in EndTM, the set of germs of metrics such that S and {N} are included in E is non-empty.We parametrize it. Generically, the holonomy algebra of those metrics is the full commutant $og^{S\cup\{N\}}$ and then, apart from some ``degenerate- cases, E is the direct sum of S and N, where N is the ideal spanned by N. To prove it, we introduce an analogy with complex Differential Calculus, the ring RX-X^n replacing the field C. This treats the case where the radical of E is principal and consists of self adjoint elements. We add a glimpse on the case where this radical is not principal.

Keywords :

Author: ** Charles Boubel - **

Source: https://hal.archives-ouvertes.fr/