Corpus linguistics and naive discriminative learning Report as inadecuate




Corpus linguistics and naive discriminative learning - Download this document for free, or read online. Document in PDF available to download.

Revista Brasileira de Linguística Aplicada 2011, 11 2

Author: R. Harald Baayen

Source: http://www.redalyc.org/articulo.oa?id=339829635003


Teaser



Revista Brasileira de Linguística Aplicada ISSN: 1676-0786 rblasecretaria@gmail.com Universidade Federal de Minas Gerais Brasil Harald Baayen, R. Corpus linguistics and naive discriminative learning Revista Brasileira de Linguística Aplicada, vol.
11, núm.
2, abril-junio, 2011, pp.
295-328 Universidade Federal de Minas Gerais Belo Horizonte, Brasil Available in: http:--www.redalyc.org-articulo.oa?id=339829635003 How to cite Complete issue More information about this article Journals homepage in redalyc.org Scientific Information System Network of Scientific Journals from Latin America, the Caribbean, Spain and Portugal Non-profit academic project, developed under the open access initiative Corpus linguistics and naive discriminative learning A linguística de corpus e a aprendizagem discriminativa ingênua R.
Harald Baayen Universität Tübingen Tübingen - Germany ABSTRACT: Three classifiers from machine learning (the generalized linear mixed model, memory based learning, and support vector machines) are compared with a naive discriminative learning classifier, derived from basic principles of errordriven learning characterizing animal and human learning.
Tested on the dative alternation in English, using the Switchboard data from (BRESNAN; CUENI; NIKITINA; BAAYEN, 2007), naive discriminative learning emerges with stateof-the-art predictive accuracy.
Naive discriminative learning offers a united framework for understanding the learning of probabilistic distributional patterns, for classification, and for a cognitive grounding of distinctive collexeme analysis. KEYWORDS: machine learning; dative alternation; Switchboard; probabilistic distributional patterns; collexeme analysis. RESUMO: Três classificadores de aprendizagem de máquina (modelos mistos lineares generalizados, aprendizagem baseada na memória e máquinas de apoio a vetores) são comparados com o classificador da aprendizagem discriminativa ingênua, derivada de princípios básicos da apren...





Related documents