Turbulence modeling of the Von Karman flow: viscous and inertial stirringsReport as inadecuate

Turbulence modeling of the Von Karman flow: viscous and inertial stirrings - Download this document for free, or read online. Document in PDF available to download.

* Corresponding author 1 MSNMGP - Modélisation et Simulation Numérique en Mécanique et Génie des Procédés 2 IRPHE - Institut de Recherche sur les Phénomènes Hors Equilibre 3 SPEC - UMR3680 - Service de physique de l-état condensé

Abstract : The present work considers the turbulent Von Karman flow generated by two counter-rotating smooth flat viscous stirring or bladed inertial stirring disks.
Numerical predictions based on one-point statistical modeling using a low Reynolds number second-order full stress transport closure RSM model are compared to velocity measurements performed at CEA Commissariat à l-Energie Atomique, France.
The main and significant novelty of this paper is the use of a drag force in the momentum equations to reproduce the effects of inertial stirring instead of modelling the blades themselves.
The influences of the rotational Reynolds number, the aspect ratio of the cavity, the rotating disk speed ratio and of the presence or not of impellers are investigated to get a precise knowledge of both the dynamics and the turbulence properties in the Von Karman configuration.
In particular, we highlighted the transition between the merged and separated boundary layer regimes and the one between the Batchelor 1951 and the Stewartson 1953 flow structures in the smooth disk case.
We determined also the transition between the one cell and the two cell regimes for both viscous and inertial stirrings.

Keywords : Von Karman flow Turbulence modeling LDV Viscous stirring Inertial stirring

Author: Sébastien Poncet - Roland Schiestel - Romain Monchaux -

Source: https://hal.archives-ouvertes.fr/


Related documents