Design and Simulation of InGaN - Junction Solar CellReport as inadecuate




Design and Simulation of InGaN - Junction Solar Cell - Download this document for free, or read online. Document in PDF available to download.

International Journal of Photoenergy - Volume 2015 2015, Article ID 594858, 9 pages -

Research Article

Laboratoire LIMOSE, Université M’hamed Bougara de Boumerdès, 35000 Boumerdès, Algeria

Unité de Développement des Equipements Solaires UDES, Centre de Développement des Energies Renouvelables CDER, Route Nle No. 11, BP 386, Bou Ismaïl, 42415 Tipaza, Algeria

Laboratoire d’Électronique Quantique, Faculté de Physique, USTHB, BP 32, El Alia, Bab Ezzouar, 16111 Alger, Algeria

Received 21 March 2015; Revised 17 May 2015; Accepted 17 June 2015

Academic Editor: Elias Stathatos

Copyright © 2015 A. Mesrane et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Abstract

The tunability of the InGaN band gap energy over a wide range provides a good spectral match to sunlight, making it a suitable material for photovoltaic solar cells. The main objective of this work is to design and simulate the optimal InGaN single-junction solar cell. For more accurate results and best configuration, the optical properties and the physical models such as the Fermi-Dirac statistics, Auger and Shockley-Read-Hall recombination, and the doping and temperature-dependent mobility model were taken into account in simulations. The single-junction In0.622Ga0.378N Eg = 1.39 eV solar cell is the optimal structure found. It exhibits, under normalized conditions AM1.5G, 0.1 W-cm

, and 300 K, the following electrical parameters:  mA-cm

, volts, FF = 86.2343%, and %. It was noticed that the minority carrier lifetime and the surface recombination velocity have an important effect on the solar cell performance. Furthermore, the investigation results show that the In0.622Ga0.378N solar cell efficiency was inversely proportional with the temperature.





Author: A. Mesrane, F. Rahmoune, A. Mahrane, and A. Oulebsir

Source: https://www.hindawi.com/



DOWNLOAD PDF




Related documents