en fr A contribution to the moving horizon state estimation by interval techniques : applications to supervision and malfunction detection in bioprocesses Contribution à lEstimation dEtat à Horizon Glissant par Méthodes EnsembReport as inadecuate




en fr A contribution to the moving horizon state estimation by interval techniques : applications to supervision and malfunction detection in bioprocesses Contribution à lEstimation dEtat à Horizon Glissant par Méthodes Ensemb - Download this document for free, or read online. Document in PDF available to download.

1 LAG - Laboratoire d-automatique de Grenoble

Abstract : This thesis proposes an original method to estimate states in non-linear discrete-time systems with global convergence properties. The method is based on an Interval Moving Horizon State Estimation Method IMHSE, which is coupled to a technique of global optimisation of nonlinear functions that uses interval arithmetic. In other words, the principal idea is to transform the problem of state estimation from a dynamic system into a static problem of global nonlinear optimisation over a considered time horizon by interval analysis. Offline measures or delayed measures can be easily used in this interval observer to reconstruct the state variables that are described using a representation by interval numbers. The work also considers model fault detection by a multimodel IMHSE as an extra property given to our observer. The goal of this multimodel observer approach is to detect dynamic variations of the involved model parameters in time. These variations are taken into account using several different models that are commuted and used by our interval observer to reconstruct the states of the system. Put simply, this approach consists of using a model for the nominal dynamic states and other models to describe situations of anomalous working perturbed parameters. The algorithm allows us to know on line which model best describes the behaviour of the system. The proposed technique is applied to biotechnological complex process models such as solid substrate fermentation, and to bioprocesses described by a hybrid model. The results obtained through experimental and computer simulation demonstrate that this kind of estimator has advantages over other observers and filters, and that it can be easily implemented in an industrial context.

Résumé : Cette thèse propose une méthode originale d-estimation ensembliste d-états de procédés nonlinéaires discrets, qui est globalement convergente. La méthode est basée sur une technique d-estimation à horizon glissant par intervalles IMHSE, couplé à une technique d-optimisation globale de fonctions non-linéaires qui utilise l-arithmétique par intervalles. En d-autres termes, la méthode IMHSE résout le problème d-estimation d-état d-un système dynamique par un problème statique d-optimisation globale non-linéaire par intervalles, sur un horizon de temps prédéfini. Les mesures faites hors ligne dans un procédé peuvent être utilisées facilement dans cet observateur ensembliste pour reconstruire les variables de l-état qui sont représentés par intervalles. Ce travail considère aussi la détection de dysfonctionnement d-un modèle en utilisant un observateur IMHSE multi-modèles une propriété de plus donnée à notre observateur. L-objectif de cette approche multi-modèles est de détecter les variations dynamiques des paramètres du modèle dans le temps. Ces variations sont prises en considération en utilisant plusieurs modèles différents. Ces modèles seront commutés par notre observateur ensembliste pour reconstruire les états du système. Mis d-une façon simple, cette approche consiste à utiliser un modèle nominal pour l-état et d-autres modèles pour décrire les situations possibles de fonctionnement anormal paramètres perturbés. L-algorithme nous permet de connaître en ligne quel est le meilleur modèle qui décrit le comportement réel du système. La technique proposée a été appliquée sur des modèles de procédés complexes biotechnologiques tel que la fermentation sur substrat solide, et à des bioprocédés décrit par des modèles hybrides. Les résultats obtenus par simulation montrent que ce type d-observateur a des avantages sur les autres observateurs et filtres, et qu-il peut être facilement appliqué dans un contexte industriel.

Mots-clés : fuyant Horizon glissant Estimation d-état MHSE Méthodes ensemblistes Systèmes complexes Observabilité Multi-modèles





Author: Héctor-Moisés Valdes-Gonzalez -

Source: https://hal.archives-ouvertes.fr/



DOWNLOAD PDF




Related documents