Atomic Force Microscopy Mechanical Mapping of Micropatterned Cells Shows Adhesion Geometry-Dependent Mechanical Response on Local and Global Scales.Report as inadecuate




Atomic Force Microscopy Mechanical Mapping of Micropatterned Cells Shows Adhesion Geometry-Dependent Mechanical Response on Local and Global Scales. - Download this document for free, or read online. Document in PDF available to download.

* Corresponding author 1 Bio-AFM-Lab - BIO-AFM-LAB Bio Atomic Force Microscopy Laboratory 2 CDC - Compartimentation et dynamique cellulaires

Abstract : In multicellular organisms, cell shape and organization are dictated by cell-cell or cell-extracellular matrix adhesion interactions. Adhesion complexes crosstalk with the cytoskeleton enabling cells to sense their mechanical environment. Unfortunately, most of cell biology studies, and cell mechanics studies in particular, are conducted on cultured cells adhering to a hard, homogeneous, and unconstrained substrate with nonspecific adhesion sites, thus far from physiological and reproducible conditions. Here, we grew cells on three different fibronectin patterns with identical overall dimensions but different geometries ▽, T, and Y, and investigated their topography and mechanics by atomic force microscopy AFM. The obtained mechanical maps were reproducible for cells grown on patterns of the same geometry, revealing pattern-specific subcellular differences. We found that local Young-s moduli variations are related to the cell adhesion geometry. Additionally, we detected local changes of cell mechanical properties induced by cytoskeletal drugs. We thus provide a method to quantitatively and systematically investigate cell mechanics and their variations, and present further evidence for a tight relation between cell adhesion and mechanics.





Author: Annafrancesca Rigato - Felix Rico - Frédéric Eghiaian - Mathieu Piel - Simon Scheuring -

Source: https://hal.archives-ouvertes.fr/



DOWNLOAD PDF




Related documents