Toolkits and Libraries for Deep LearningReport as inadecuate




Toolkits and Libraries for Deep Learning - Download this document for free, or read online. Document in PDF available to download.

Journal of Digital Imaging

pp 1–6

First Online: 17 March 2017

Abstract

Deep learning is an important new area of machine learning which encompasses a wide range of neural network architectures designed to complete various tasks. In the medical imaging domain, example tasks include organ segmentation, lesion detection, and tumor classification. The most popular network architecture for deep learning for images is the convolutional neural network CNN. Whereas traditional machine learning requires determination and calculation of features from which the algorithm learns, deep learning approaches learn the important features as well as the proper weighting of those features to make predictions for new data. In this paper, we will describe some of the libraries and tools that are available to aid in the construction and efficient execution of deep learning as applied to medical images.

KeywordsArtificial intelligence Machine learning Deep learning Convolutional neural network  Download fulltext PDF



Author: Bradley J. Erickson - Panagiotis Korfiatis - Zeynettin Akkus - Timothy Kline - Kenneth Philbrick

Source: https://link.springer.com/







Related documents