A Sparsity-Driven Approach to Multi-camera Tracking in Visual Sensor NetworksReport as inadecuate

A Sparsity-Driven Approach to Multi-camera Tracking in Visual Sensor Networks - Download this document for free, or read online. Document in PDF available to download.

* Corresponding author 1 STARS - Spatio-Temporal Activity Recognition Systems CRISAM - Inria Sophia Antipolis - Méditerranée 2 SPIS - Signal Processing and Information Systems İstanbul Sabancy University

Abstract : In this paper, a sparsity-driven approach is presented for multi-camera tracking in visual sensor networks VSNs.
VSNs consist of image sensors, embedded processors and wireless transceivers which are powered by batteries.
Since the energy and bandwidth resources are limited, setting up a tracking system in VSNs is a challenging problem.
Motivated by the goal of tracking in a bandwidth-constrained environment , we present a sparsity-driven method to compress the features extracted by the camera nodes, which are then transmitted across the network for distributed inference.
We have designed special overcomplete dictionaries that match the structure of the features, leading to very parsimonious yet accurate representations.
We have tested our method in indoor and outdoor people tracking scenarios.
Our experimental results demonstrate how our approach leads to communication savings without significant loss in tracking performance.

Author: Serhan Cosar - Mujdat Cetin -

Source: https://hal.archives-ouvertes.fr/


Related documents