Unifying evolutionary dynamics: from individual stochastic processes to macroscopic modelsReport as inadecuate

Unifying evolutionary dynamics: from individual stochastic processes to macroscopic models - Download this document for free, or read online. Document in PDF available to download.

1 TOSCA INRIA Lorraine, CRISAM - Inria Sophia Antipolis - Méditerranée , UHP - Université Henri Poincaré - Nancy 1, Université Nancy 2, INPL - Institut National Polytechnique de Lorraine, CNRS - Centre National de la Recherche Scientifique : UMR7502 2 FESE - Fonctionnement et évolution des systèmes écologiques 3 EEB - Ecology and Evolutionary Biology Tucson 4 CMAP - Centre de Mathématiques Appliquées

Abstract : A distinctive signature of living systems is Darwinian evolution, that is, a propensity to generate as well as self-select individual diversity. To capture this essential feature of life while describing the dynamics of populations, mathematical models must be rooted in the microscopic, stochastic description of discrete individuals characterized by one or several adaptive traits and interacting with each other. The simplest models assume asexual reproduction and haploid genetics: an offspring usually inherits the trait values of her progenitor, except when a mutation causes the offspring to take a mutation step to new trait values; selection follows from ecological interactions among individuals. Here we present a rigorous construction of the microscopic population process that captures the probabilistic dynamics over continuous time of birth, mutation, and death, as influenced by the trait values of each individual, and interactions between individuals. A by-product of this formal construction is a general algorithm for effcient numerical simulation of the individual-level model. Once the microscopic process is in place, we derive different macroscopic models of adaptive evolution. These models differ in the renormalization they assume, i.e. in the limits taken, in specific orders, on population size, mutation rate, mutation step, while rescaling time accordingly. The macroscopic models also differ in their mathematical nature: deterministic, in the form of ordinary, integro-, or partial differential equations, or probabilistic, like stochastic partial differential equations or superprocesses. These models include extensions of Kimura-s equation and of its approximation for small mutation effects to frequency- and density-dependent selection. A novel class of macroscopic models obtains when assuming that individual birth and death occur on a short timescale compared with the timescale of typical population growth. On a timescale of very rare mutations, we establish rigorously the models of -trait substitution sequences- and their approximation known as the -canonical equation of adaptive dynamics-. We extend these models to account for mutation bias and random drift between multiple evolutionary attractors. The renormalization approach used in this study also opens promising avenues to study and predict patterns of life-history allometries, thereby bridging individual physiology, genetic variation, and ecological interactions in a common evolutionary framework.

Keywords : adaptive evolution individual-based model birth and death point process body size scaling timescale separation mutagenesis density-dependent selection frequency-dependent selection invasion fitness adaptive dynamics canonical equation nonlinear stochastic partial differential equations nonlinear PDEs large deviation principle

Author: Nicolas Champagnat - Régis Ferrière - Sylvie Méléard -

Source: https://hal.archives-ouvertes.fr/


Related documents