Transcriptome survey of the anhydrobiotic tardigrade Milnesium tardigradum in comparison with Hypsibius dujardini and Richtersius coroniferReport as inadecuate




Transcriptome survey of the anhydrobiotic tardigrade Milnesium tardigradum in comparison with Hypsibius dujardini and Richtersius coronifer - Download this document for free, or read online. Document in PDF available to download.

BMC Genomics

, 11:168

First Online: 12 March 2010Received: 22 October 2009Accepted: 12 March 2010

Abstract

BackgroundThe phenomenon of desiccation tolerance, also called anhydrobiosis, involves the ability of an organism to survive the loss of almost all cellular water without sustaining irreversible damage. Although there are several physiological, morphological and ecological studies on tardigrades, only limited DNA sequence information is available. Therefore, we explored the transcriptome in the active and anhydrobiotic state of the tardigrade Milnesium tardigradum which has extraordinary tolerance to desiccation and freezing. In this study, we present the first overview of the transcriptome of M. tardigradum and its response to desiccation and discuss potential parallels to stress responses in other organisms.

ResultsWe sequenced a total of 9984 expressed sequence tags ESTs from two cDNA libraries from the eutardigrade M. tardigradum in its active and inactive, anhydrobiotic tun stage. Assembly of these ESTs resulted in 3283 putative unique transcripts, whereof ~50% showed significant sequence similarity to known genes. The resulting unigenes were functionally annotated using the Gene Ontology GO vocabulary. A GO term enrichment analysis revealed several GOs that were significantly underrepresented in the inactive stage. Furthermore we compared the putative unigenes of M. tardigradum with ESTs from two other eutardigrade species that are available from public sequence databases, namely Richtersius coronifer and Hypsibius dujardini. The processed sequences of the three tardigrade species revealed similar functional content and the M. tardigradum dataset contained additional sequences from tardigrades not present in the other two.

ConclusionsThis study describes novel sequence data from the tardigrade M. tardigradum, which significantly contributes to the available tardigrade sequence data and will help to establish this extraordinary tardigrade as a model for studying anhydrobiosis. Functional comparison of active and anhydrobiotic tardigrades revealed a differential distribution of Gene Ontology terms associated with chromatin structure and the translation machinery, which are underrepresented in the inactive animals. These findings imply a widespread metabolic response of the animals on dehydration. The collective tardigrade transcriptome data will serve as a reference for further studies and support the identification and characterization of genes involved in the anhydrobiotic response.

Electronic supplementary materialThe online version of this article doi:10.1186-1471-2164-11-168 contains supplementary material, which is available to authorized users.

Download fulltext PDF



Author: Brahim Mali - Markus A Grohme - Frank Förster - Thomas Dandekar - Martina Schnölzer - Dirk Reuter - Weronika Wełnicz -

Source: https://link.springer.com/article/10.1186/1471-2164-11-168



DOWNLOAD PDF




Related documents