Differential regulation of abundance and deadenylation of maternal transcripts during bovine oocyte maturation in vitro and in vivoReport as inadecuate




Differential regulation of abundance and deadenylation of maternal transcripts during bovine oocyte maturation in vitro and in vivo - Download this document for free, or read online. Document in PDF available to download.

BMC Developmental Biology

, 7:125

First Online: 07 November 2007Received: 13 April 2007Accepted: 07 November 2007

Abstract

BackgroundIn bovine maturing oocytes and cleavage stage embryos, gene expression is mostly controlled at the post-transcriptional level, through degradation and deadenylation-polyadenylation. We have investigated how post transcriptional control of maternal transcripts was affected during in vitro and in vivo maturation, as a model of differential developmental competence.

ResultsUsing real time PCR, we have analyzed variation of maternal transcripts, in terms of abundance and polyadenylation, during in vitro or in vivo oocyte maturation and in vitro embryo development. Four genes are characterized here for the first time in bovine: ring finger protein 18 RNF18 and breast cancer anti-estrogen resistance 4 BCAR4, whose oocyte preferential expression was not previously reported in any species, as well as Maternal embryonic leucine zipper kinase MELK and STELLA. We included three known oocyte marker genes Maternal antigen that embryos require MATER, Zygote arrest 1 ZAR1, NACHT, leucine rich repeat and PYD containing 9 NALP9. In addition, we selected transcripts previously identified as differentially regulated during maturation, peroxiredoxin 1 and 2 PRDX1, PRDX2, inhibitor of DNA binding 2 and 3 ID2, ID3, cyclin B1 CCNB1, cell division cycle 2 CDC2, as well as Aurora A AURKA. Most transcripts underwent a moderate degradation during maturation. But they displayed sharply contrasted deadenylation patterns that account for variations observed previously by DNA array and correlated with the presence of a putative cytoplasmic polyadenylation element in their 3- untranslated region. Similar variations in abundance and polyadenylation status were observed during in vitro maturation or in vivo maturation, except for PRDX1, that appears as a marker of in vivo maturation. Throughout in vitro development, oocyte restricted transcripts were progressively degraded until the morula stage, except for MELK ; and the corresponding genes remained silent after major embryonic genome activation.

ConclusionAltogether, our data emphasize the extent of post-transcriptional regulation during oocyte maturation. They do not evidence a general alteration of this phenomenon after in vitro maturation as compared to in vivo maturation, but indicate that some individual messenger RNA can be affected.

Electronic supplementary materialThe online version of this article doi:10.1186-1471-213X-7-125 contains supplementary material, which is available to authorized users.

Download fulltext PDF



Author: Aurore Thélie - Pascal Papillier - Sophie Pennetier - Christine Perreau - Juan Martin Traverso - Svetlana Uzbekova - Pasca

Source: https://link.springer.com/article/10.1186/1471-213X-7-125







Related documents