Establishment of automated culture system for murine induced pluripotent stem cellsReport as inadecuate




Establishment of automated culture system for murine induced pluripotent stem cells - Download this document for free, or read online. Document in PDF available to download.

BMC Biotechnology

, 12:81

Cellular and tissue engineering

Abstract

BackgroundInduced pluripotent stem iPS cells can differentiate into any cell type, which makes them an attractive resource in fields such as regenerative medicine, drug screening, or in vitro toxicology. The most important prerequisite for these industrial applications is stable supply and uniform quality of iPS cells. Variation in quality largely results from differences in handling skills between operators in laboratories. To minimize these differences, establishment of an automated iPS cell culture system is necessary.

ResultsWe developed a standardized mouse iPS cell maintenance culture, using an automated cell culture system housed in a CO2 incubator commonly used in many laboratories. The iPS cells propagated in a chamber uniquely designed for automated culture and showed specific colony morphology, as for manual culture. A cell detachment device in the system passaged iPS cells automatically by dispersing colonies to single cells. In addition, iPS cells were passaged without any change in colony morphology or expression of undifferentiated stem cell markers during the 4 weeks of automated culture.

ConclusionsOur results show that use of this compact, automated cell culture system facilitates stable iPS cell culture without obvious effects on iPS cell pluripotency or colony-forming ability. The feasibility of iPS cell culture automation may greatly facilitate the use of this versatile cell source for a variety of biomedical applications.

KeywordsInduced pluripotent stem iPS cellAutomated cell culture system ACCSCO2 incubator-scalePluripotencyElectronic supplementary materialThe online version of this article doi:10.1186-1472-6750-12-81 contains supplementary material, which is available to authorized users.

Hiroyuki Koike, Koji Kubota, Keisuke Sekine contributed equally to this work.

Download fulltext PDF



Author: HiroyukiKoike - KojiKubota - KeisukeSekine - TakanoriTakebe - RieOuchi - Yun-WenZheng - YasuharuUeno - NaokiTanigawa - HidekiTanig

Source: https://link.springer.com/



DOWNLOAD PDF




Related documents