Short and long-term genome stability analysis of prokaryotic genomesReport as inadecuate

Short and long-term genome stability analysis of prokaryotic genomes - Download this document for free, or read online. Document in PDF available to download.

BMC Genomics

, 14:309

Comparative and evolutionary genomics


BackgroundGene organization dynamics is actively studied because it provides useful evolutionary information, makes functional annotation easier and often enables to characterize pathogens. There is therefore a strong interest in understanding the variability of this trait and the possible correlations with life-style. Two kinds of events affect genome organization: on one hand translocations and recombinations change the relative position of genes shared by two genomes i.e. the backbone gene order; on the other, insertions and deletions leave the backbone gene order unchanged but they alter the gene neighborhoods by breaking the syntenic regions. A complete picture about genome organization evolution therefore requires to account for both kinds of events.

ResultsWe developed an approach where we model chromosomes as graphs on which we compute different stability estimators; we consider genome rearrangements as well as the effect of gene insertions and deletions. In a first part of the paper, we fit a measure of backbone gene order conservation hereinafter called backbone stability against phylogenetic distance for over 3000 genome comparisons, improving existing models for the divergence in time of backbone stability. Intra- and inter-specific comparisons were treated separately to focus on different time-scales. The use of multiple genomes of a same species allowed to identify genomes with diverging gene order with respect to their conspecific. The inter-species analysis indicates that pathogens are more often unstable with respect to non-pathogens. In a second part of the text, we show that in pathogens, gene content dynamics insertions and deletions have a much more dramatic effect on genome organization stability than backbone rearrangements.

ConclusionIn this work, we studied genome organization divergence taking into account the contribution of both genome order rearrangements and genome content dynamics. By studying species with multiple sequenced genomes available, we were able to explore genome organization stability at different time-scales and to find significant differences for pathogen and non-pathogen species. The output of our framework also allows to identify the conserved gene clusters and-or partial occurrences thereof, making possible to explore how gene clusters assembled during evolution.

Electronic supplementary materialThe online version of this article doi:10.1186-1471-2164-14-309 contains supplementary material, which is available to authorized users.

Download fulltext PDF

Author: Matteo Brilli - Pietro Liò - Vincent Lacroix - Marie-France Sagot



Related documents