Inversion des matrices de Toeplitz dont le symbole admet un zéro d'ordre fractionnaire positif, valeur propre minimale - Mathematics > Functional AnalysisReport as inadecuate




Inversion des matrices de Toeplitz dont le symbole admet un zéro d'ordre fractionnaire positif, valeur propre minimale - Mathematics > Functional Analysis - Download this document for free, or read online. Document in PDF available to download.

Abstract: Inversion of Toeplitz matrices with singular symbol. Minimal eigenvalues.Three results are stated in this paper. The first one is devoted to the studyof the orthogonal polynomial with respect of the weight $\varphi {\alpha}\theta=\vert 1- e^{i \theta} \vert ^{2\alpha} f {1}e^{i \theta}$, with$\alpha> \demi$ and $\alpha \in r \setminus n $, and $f {1}$ a regularfunction. We obtain an asymptotic expansion of the coefficients of thesepolynomials, and we deduce an asymptotic of the entries of $\left T {N}\varphi {\alpha} ight^{-1}$ where $T {N} \varphi {\alpha}$ is a Toeplitzmatrix with symbol $\varphi {\alpha}$. Then we extend a result of A. B\-ottcherand H. Widom result related to the minimal eigenvalue of the Toeplitz matrix$T {N}\varphi {\alpha}$. For $N$ goes to the infinity it is well known thatthis minimal eigenvalue admit as asymptotic $\frac{c {\alpha}}{N^{2\alpha}}f {1}1$. When $\alpha\in n$ the previous authors obtain an asymptotic of$c {\alpha}$ for $\alpha$ going to the infinity, and they have the bounds of$c {\alpha}$ for the other cases. Here we obtain the same type of results butfor $\alpha$ a positive real.



Author: Philippe Rambour LM-Orsay, Abdellatif Seghier LM-Orsay

Source: https://arxiv.org/







Related documents