Two global data sets of daily fire emission injection heights since 2003Report as inadecuate

Two global data sets of daily fire emission injection heights since 2003 - Download this document for free, or read online. Document in PDF available to download.

1 LMD - Laboratoire de Météorologie Dynamique 2 MPI-M - Max-Planck-Institut für Meteorologie 3 King‘s College London London 4 FMI - Finnish Meteorological Institute 5 MPIC - Max-Planck-Institut für Chemie 6 Satellite Applications 7 LaRC - NASA Langley Research Center Hampton 8 ECMWF - European Centre for Medium-Range Weather Forecasts

Abstract : The Global Fire Assimilation System GFAS assimilates fire radiative power FRP observations from satellite-based sensors to produce daily estimates of biomass burning emissions. It has been extended to include information about injection heights derived from fire observations and meteorological information from the operational weather forecasts of ECMWF.Injection heights are provided by two distinct methods: the Integrated Monitoring and Modelling System for wildland fires IS4FIRES parameterisation and the one-dimensional plume rise model PRM. A global database of daily biomass burning emissions and injection heights at 0.1° resolution has been produced for 2003–2015 and is continuously extended in near-real time with the operational GFAS service of the Copernicus Atmospheric Monitoring Service CAMS.In this study, the two injection height data sets were compared with the new MPHP2 MISR Plume Height Project 2 satellite-based plume height retrievals. The IS4FIRES parameterisation showed a better overall agreement than the observations, while the PRM was better at capturing the variability of injection heights. The performance of both parameterisations is also dependent on the type of vegetation.Furthermore, the use of biomass burning emission heights from GFAS in atmospheric composition forecasts was assessed in two case studies: the South AMerican Biomass Burning Analysis SAMBBA campaign which took place in September 2012 in Brazil, and a series of large fire events in the western USA in August 2013. For these case studies, forecasts of biomass burning aerosol species by the Composition Integrated Forecasting System C-IFS of CAMS were found to better reproduce the observed vertical distribution when using PRM injection heights from GFAS compared to aerosols emissions being prescribed at the surface.The globally available GFAS injection heights introduced and evaluated in this study provide a comprehensive data set for future fire and atmospheric composition modelling studies.

Author: Samuel Rémy - Andreas Veira - Ronan Paugam - Mikhail Sofiev - Johannes W. Kaiser - Franco Marenco - Sharon P. Burton - Angela Be



Related documents